How do you prove (tan u + cot u)(cos u + sin u) = csc u + sec u?

1 Answer
Sep 1, 2015

First, expand the Left Hand Side("LHS")

"LHS"=(tan u + cot u)(cos u + sin u)

=tanucosu+tanusinu+cotucosu+cotusinu

Recall that : tanu=sinu/cosu
and " "cotu=cosu/sinu

=>"LHS"=sinu/cancel(cosu)*cancel(cosu)+sinu/cosu*sinu+cosu/sinu*cosu+cosu/cancel(sinu)*cancel(sinu)

=sinu+sin^2u/cosu+cos^2u/sinu+cosu

=sinu+cos^2u/sinu+cosu+sin^2u/cosu

=sin^2u/sinu+cos^2u/sinu+cos^2u/cosu+sin^2u/cosu

=(sin^2u+cos^2u)/sinu+(cos^2u+sin^2u)/cosu

Recall again that : sin^2u + cos^2u=1

=>"LHS"=1/sinu+1/cosu

Recall that : 1/sinu=cscu
and also " "1/cosu=secu

=>"LHS"=color(blue)(cscu+secu)

Quad Era Demonstrandum