How do you provetanx/(1+cosx) + sinx/(1-cosx)=cotx+(secx)(cscx)?

1 Answer
Jul 16, 2016

To prove tanx/(1+cosx) + sinx/(1-cosx)=cotx+(secx)(cscx)

LHS=(sinx(1-cosx))/(cosx(1+cosx)(1-cosx)) + (sinx(1+cosx))/((1-cosx)(1+cosx))

=(sinx(1-cosx))/(cosx(1-cos^2x)) + (sinx(1+cosx))/((1-cos^2x))

=(sinx(1-cosx))/(cosxsin^2x)+ (sinx(1+cosx))/(sin^2x)

=(1-cosx)/(cosxsinx)+ (cosx(1+cosx))/(sinxcosx)

=(1-cosx+cosx(1+cosx))/(sinxcosx)

=(1-cosx+cosx+cos^2x)/(sinxcosx)

=(1+cos^2x)/(sinxcosx)

=cos^2x/(sinxcosx)+1/(sinxcosx)

=cosx/sinx+1/(sinxcosx)

=cotx+cscxsecx=RHS

Proved