To prove tanx/(1+cosx) + sinx/(1-cosx)=cotx+(secx)(cscx)
LHS=(sinx(1-cosx))/(cosx(1+cosx)(1-cosx)) + (sinx(1+cosx))/((1-cosx)(1+cosx))
=(sinx(1-cosx))/(cosx(1-cos^2x)) + (sinx(1+cosx))/((1-cos^2x))
=(sinx(1-cosx))/(cosxsin^2x)+ (sinx(1+cosx))/(sin^2x)
=(1-cosx)/(cosxsinx)+ (cosx(1+cosx))/(sinxcosx)
=(1-cosx+cosx(1+cosx))/(sinxcosx)
=(1-cosx+cosx+cos^2x)/(sinxcosx)
=(1+cos^2x)/(sinxcosx)
=cos^2x/(sinxcosx)+1/(sinxcosx)
=cosx/sinx+1/(sinxcosx)
=cotx+cscxsecx=RHS
Proved