How do you prove that: (sin^2 x+ cos^2 x + cot^2 x) / (1+tan^2 x) = cot^2 x ?
1 Answer
We wish to prove that:
(sin^2 x+ cos^2 x + cot^2 x) / (1+tan^2 x) -= cot^2 x
We can utilise the identities:
sin^2A + cos^2A -= 1
1 + tan^2A -= sec^2 A
1 + cot^2A -= csc^2 A
Consider the LHS:
LHS = (sin^2 x+ cos^2 x + cot^2 x) / (1+tan^2 x)
\ \ \ \ \ \ \ \ = (1 + cot^2 x) / (1+tan^2 x)
\ \ \ \ \ \ \ \ = (csc^2 x) / (sec^2 x)
\ \ \ \ \ \ \ \ = ((csc x) / (sec x))^2
\ \ \ \ \ \ \ \ = ((1/sinx) / (1/cosx))^2
\ \ \ \ \ \ \ \ = (cosx/sinx )^2
\ \ \ \ \ \ \ \ = (cotx)^2
\ \ \ \ \ \ \ \ = cot^2x
\ \ \ \ \ \ \ \ = RHS \ \ \ \ QED