How do you prove this identity?

Prove:

#cotx=sinxsin(pi/2-x)+cos^2xcotx#

Please and thanks :)

1 Answer
Nov 26, 2017

See below.

Explanation:

These are the identities I use in this proof:

#sin(pi/2 - x) = cos x#

#sin^2x + cos^2x =1#

#color(white)x#

#cot x = sin x sin (pi/2 - x) + cos^2 x cot x#

#=sin x cos x + cos^2x cot x#

#=sin x cos x + (cos^2 x * cos x / sin x)#

#=sin x cos x + cos^3x/sin x#

#=(sin^2 x cos x) / sin x + cos^3x/sin x#

#=(sin^2 x cos x + cos ^3x )/sin x#

#=(cos x (sin^2x + cos^2x))/sin x#

#=(cos x *1) /sin x#

#=cos x / sin x#

#=cot x#

#color(white)x cot x = cot x#