How do you rewrite y = x^2 + 14x + 29y=x2+14x+29 in vertex form?
2 Answers
y=(x+7)^2+20y=(x+7)2+20
Explanation:
Given -
y=x^2+14x+29y=x2+14x+29
Vertex form of the equation is -
y=a(x-h)^2-ky=a(x−h)2−k
Where -
a -a− is the coefficient ofx^2x2
h-h− is the x-coordinate of the vertex
k-k− is the y-coordinate of the vertex
First, find the vertex of the given equation
x=(-b)/(2a)=(-14)/2=-7x=−b2a=−142=−7
y=(-7)^2+14(-7)+29=49-98+29=-20y=(−7)2+14(−7)+29=49−98+29=−20
Vertex
a=1a=1
Substitute these values in the formula
y=(x-(-7))^2-(-20)y=(x−(−7))2−(−20)
y=(x+7)^2+20y=(x+7)2+20
Explanation:
Vertex form is
Use the process of completing the square
This is vertex form.
The vertex will be at