How do you show that #lim_(r->oo) e^(ircostheta - rsintheta) = 0#?
1 Answer
Sep 4, 2017
# L = lim_(r->oo) e^(ircostheta - rsintheta) #
# \ \ \= lim_(r->oo) e^(ircostheta)e^(- rsintheta) #
Using Euler's formula:
# e^(ix) = cosx + isinx #
We can write:
# L = lim_(r->oo) e^(- rsintheta) { cos(rcostheta) + isin(rcostheta) } #
# \ \ \= lim_(r->oo) e^(- rsintheta) cos(rcostheta) + ilim_(r->oo) e^(- rsintheta) sin(rcostheta) #
Intuitively we can see that the trig portions oscillate between
Thus:
# L= 0+0i #
# \ \ \= 0 # QED