How do you simplify #1 – sec² t#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Nghi N. Nov 20, 2015 Simplify (1 - sec^2 t) Ans: #-tan^2 t# Explanation: #(1 - sec^2 t) = (1 - 1/(cos^2 t)) = (cos^2 t - 1)/cos^2 t =# #= - (sin^2 t)/(cos ^2 t) = -tan^2 t# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 3868 views around the world You can reuse this answer Creative Commons License