How do you simplify (-15w^0u^-1)/(5u^3)?

1 Answer
May 15, 2018

" "
color(red)([-15w^0u^-1]/[5u^3] =-(3)/u^4

Explanation:

" "

**Given: ** color(blue)([-15w^0u^-1]/[5u^3]

color(green)("Step 1 : "

**Exponent Rule: ** color(red)(m^0=1

So, color(blue)(w^0=1

**Exponent Rule: ** color(red)(m^-n=1/m^n

So, color(blue)(u^-1=1/u^1=1/u

color(green)("Step 2 : "

**Consider: ** color(blue)([-15w^0u^-1]/[5u^3]

To simplify, use the intermediate results found in Step 1:

rArr [-15(1)(1)]/[5u^3*u]

**Exponent Rule: ** color(red)(a^m*a^n=a^(m+n)

So, u^3*u=u^3*u^1=u^4

rArr -[15]/[5u^4]

color(green)("Step 3 : "

Combine ** color(red)("Like Terms" to simplify**

rArr -(15/5)*(1/u^4)

rArr -(cancel 15^color(blue)(3)/cancel 5)*(1/u^4)

rArr -3*(1/u^4)

rArr -3/u^4

Hence,

color(blue)([-15w^0u^-1]/[5u^3] =-(3)/(u^4)