How do you simplify #(2a^2 + 6)/(5b^3) * (10b^4)/(3a^2 + 9)#? Algebra Rational Equations and Functions Multiplication of Rational Expressions 1 Answer MeneerNask Jul 19, 2015 Factorise, and then cancel Explanation: #=(2(a^2+3))/(5*b^3)*(2*5*b*b^3)/(3(a^2+3)# #=(2cancel((a^2+3)))/(cancel5*cancelb^3)*(2*cancel5*b*cancelb^3)/(3cancel((a^2+3))# #=(2*2*b)/3=(4b)/3or4/3b# Answer link Related questions What is Multiplication of Rational Expressions? How do you multiplying rational expressions? Is multiplication of rational expressions commutative? How do you multiply #\frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18}#? How do you multiply and simplify to the lowest terms #\frac{x^3}{2y^3} \cdot \frac{2y^2}{x}#? How do you multiply #\frac{5x^2+16x+3}{36x^2-25} \cdot (6x^2+5x)#? How do you multiply and simplify the expression #2xy \cdot \frac{2y^2}{x^3}#? How do you multiply #(a^2-a-12)/(a^2-5a+4)*(a^2+2a-3)/(a^2+a-6)#? How do you multiply #(4(x+2))/(5x)*(6x^2)/(2x)#? How do you multiply #(30a^2)/(18b)*(6b)/(5a)#? See all questions in Multiplication of Rational Expressions Impact of this question 3589 views around the world You can reuse this answer Creative Commons License