How do you simplify ((2a)/(9c))^-2 and write it using only positive exponents?

3 Answers
Jul 7, 2017

See a solution process below:

Explanation:

First, use these rules of exponents to eliminate the outer exponent:

a = a^color(red)(1) and (x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))

((2a)/(9c))^-2 => ((2^color(red)(1)a^color(red)(1))/(9^color(red)(1)c^color(red)(1)))^color(blue)(-2) => (2^(color(red)(1) xx color(blue)(-2))a^(color(red)(1) xx color(blue)(-2)))/(9^(color(red)(1) xx color(blue)(-2))c^(color(red)(1) xx color(blue)(-2))) => (2^-2a^-2)/(9^-2c^-2)

Now, use these rules of exponents to eliminate the negative exponents:

x^color(red)(a) = 1/x^color(red)(-a) and 1/x^color(red)(a) = x^color(red)(-a)

(2^color(red)(-2)a^color(red)(-2))/(9^color(red)(-2)c^color(red)( -2)) => (9^color(red)(- -2)c^color(red)(- -2))/(2^color(red)(- -2)a^color(red)(- -2)) => (9^2c^2)/(2^2a^2) => (81c^2)/(4a^2)

Jul 7, 2017

(81c^2)/(4a^2)

Explanation:

((2a)/(9c))^-2

;.=1/(((2a)/(9c))^2)

;.=1/((4a^2)/(81c^2))

;.=1/1 xx (81c^2)/(4a^2)

;.= (81c^2)/(4a^2)

Jul 7, 2017

(81c^2)/(4a^2)

Explanation:

One of the laws of indices states that:

(a/b)^-m = (b/a)^(+m)

So, by inverting the fraction, the index changes sign.

((2a)/(9c))^color(magenta)(-2) = ((9c)/(2a))^color(magenta)(2)

All the indices are now positive and it only remains to square each factor.

((9c)/(2a))^2 = (81c^2)/(4a^2)