How do you simplify (-2mn^2)^-3/(4m^-6 n^4)?

1 Answer
Jun 16, 2015

= color(blue)(-m^3.n^-10)/32

Explanation:

(-2mn^2)^-3/(4m^-6 n^4)

Simplifying the numerator:
(-2^1m^1n^2)^color(red)(-3
=-2^(1 . color(red)(-3)) . m^(1. color(red)(-3)) . n^(2 . color(red)(-3)^
= -2^-3m^-3n^-6
= color(blue)(-1/2^3m^-3n^-6
= color(blue)(-m^-3n^-6)/8

The expression can now be written as :
= color(blue)(-m^-3n^-6)/(8.4m^-6 n^4)

= color(blue)(-m^-3n^-6)/(32m^-6 n^4)

Note : color(blue)(a^m /a^n = a^(m-n)
Applying the above to the exponents of m and n

= (-m^(-3+6).n^(-6-4))/32
= color(blue)(-m^3.n^-10)/32