How do you simplify (36 m^4 n^3)/(24 m^2 n^5)36m4n324m2n5?

1 Answer
Oct 2, 2015

=color(blue)(3/2 m^color(blue)(2) n^color(blue)(-2)=32m2n2

Explanation:

(36m^4n^3)/(24m^2n^5)36m4n324m2n5

= (cancel36/cancel24) * (m^4n^3)/(m^2n^5)

=(3/2) (m^4n^3)/(m^2n^5)

As per properties:
color(blue)(1/a=a^-1

color(blue)(a^m*a^n=a^(m+n)

Applying the above properties to m and n

=(3/2) m^4n^3 * m^color(blue)(-2)n^color(blue)(-5)

=(3/2) * m^color(blue)((4-2)) n^color(blue)((3-5))

=(3/2) * m^color(blue)((2)) n^color(blue)((-2))

=color(blue)(3/2 m^color(blue)(2) n^color(blue)(-2)