How do you simplify ((3m^5r^3)/(4p^8))^4(3m5r34p8)4?

1 Answer
May 18, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to rewrite the expression:

a = a^color(red)(1)a=a1

((3m^5r^3)/(4p^8))^4 => ((3^color(red)(1)m^5r^3)/(4^color(red)(1)p^8))^4(3m5r34p8)4(31m5r341p8)4

Next, use this rule of equations to complete the simplification:

(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))(xa)b=xa×b

((3^color(red)(1)m^5r^3)/(4^color(red)(1)p^8))^4 => ((3^color(red)(1)m^color(red)(5)r^color(red)(3))/(4^color(red)(1)p^color(red)(8)))^color(blue)(4) => (3^(color(red)(1) xx color(blue)(4))m^(color(red)(5) xx color(blue)(4))r^(color(red)(3) xx color(blue)(4)))/(4^(color(red)(1) xx color(blue)(4))p^(color(red)(8) xx color(blue)(4))) =>(31m5r341p8)4(31m5r341p8)431×4m5×4r3×441×4p8×4

(3^4m^20r^12)/(4^4p^32) => (81m^20r^12)/(256p^32)34m20r1244p3281m20r12256p32