How do you simplify (3r^7)/(2r^2)^4?

1 Answer
Oct 29, 2016

3/(16r)

Explanation:

This fraction is simplified by using the power identities of powers with same base

color(blue)((r^n)^m=r^(nxxm)

color(red)(r^m/r^n=r^(m-n))

color(purple)((axxb))^m=a^mxxb^m

(3r^7)/(2r^2)^4=(3r^7)/(2^4color(blue)(r^(2xx4)))

(3r^7)/(2r^2)^4=(3r^7)/(2^4r^8)

(3r^7)/(2r^2)^4=(3/2^4)(r^7/r^8)

(3r^7)/(2r^2)^4=(3/16)color(red)(r^(7-8))

(3r^7)/(2r^2)^4=(3r^(-1))/16

(3r^7)/(2r^2)^4=3/(16r)