How do you simplify (3x^2-5x-2)/(6x^3+2x^2+3x+1)?

1 Answer
Jun 3, 2015

color(red)((3x^2-5x-2))/color(purple)((6x^3+2x^2+3x+1))

  • Factorising the numerator :
    By splitting the middle term
    color(red)(3x^2-5x-2

3x^2-5x-2 = 3x^2-6x + 1x -2
= 3x(x-2)+1(x-2)
= color(red)((3x+1)(x-2)

  • Factorising the denominator:
    By grouping
    color(purple)(6x^3+2x^2+3x+1)

= (6x^3+2x^2)+(3x+1)
= 2x^2(3x +1)+1(3x+1)
= color(purple)((2x^2+1) (3x +1)

The expression becomes:
= color(red)(cancel(3x+1)(x-2))/ color(purple)((2x^2+1) cancel(3x +1)
= color(red)((x-2))/ color(purple)((2x^2+1)