How do you simplify 64(x^{4}y^{3})^{\frac{5}{6}}? Prealgebra Exponents, Radicals and Scientific Notation Exponents 1 Answer Shwetank Mauria Jun 23, 2017 64(x^4y^3)^(5/6)=64x^3y^2root(3)xsqrty Explanation: Remember (ab)^m=a^mb^m and (a^m)^n=a^(mn) Hence 64(x^4y^3)^(5/6) = 64xx(x^4)^(5/6)xx(y^3)^(5/6) = 64xx x^(4xx5/6)xxy^(3xx5/6) = 64xx x^(20/6)xxy^(15/6) = 64xx x^((color(red)2xx10)/(color(red)2xx3))xxy^((color(red)3xx5)/(color(red)3xx2)) = 64xx x^(10/3)xxy^(5/2) = 64xx x^(3+1/3)xxy^(2+1/2) = 64xx x^3x^(1/3)y^2y^(1/2) = 64x^3y^2root(3)xsqrty Answer link Related questions How do you simplify c^3v^9c^-1c^0? How do you simplify (- 1/5)^-2 + (-2)^-2? How do you simplify (4^6)^2 ? How do you simplify 3x^(2/3) y^(3/4) (2x^(5/3) y^(1/2))^3 ? How do you simplify 4^3·4^5? How do you simplify (5^-2)^-3? How do you simplify and write (-5.3)^0 with positive exponents? How do you factor 12j^2k - 36j^6k^6 + 12j^2? How do you simplify the expression 2^5/(2^3 times 2^8)? When can I add exponents? See all questions in Exponents Impact of this question 1595 views around the world You can reuse this answer Creative Commons License