How do you simplify 64(x^{4}y^{3})^{\frac{5}{6}}?

1 Answer
Jun 23, 2017

64(x^4y^3)^(5/6)=64x^3y^2root(3)xsqrty

Explanation:

Remember (ab)^m=a^mb^m and (a^m)^n=a^(mn)

Hence 64(x^4y^3)^(5/6)

= 64xx(x^4)^(5/6)xx(y^3)^(5/6)

= 64xx x^(4xx5/6)xxy^(3xx5/6)

= 64xx x^(20/6)xxy^(15/6)

= 64xx x^((color(red)2xx10)/(color(red)2xx3))xxy^((color(red)3xx5)/(color(red)3xx2))

= 64xx x^(10/3)xxy^(5/2)

= 64xx x^(3+1/3)xxy^(2+1/2)

= 64xx x^3x^(1/3)y^2y^(1/2)

= 64x^3y^2root(3)xsqrty