How do you simplify 7x^3(2x^2)^2/(10x^5)7x3(2x2)210x5?

2 Answers

It is 7x^3(2x^2)^2/(10x^5)=7x^3*(4x^4)/(10x^5)=(28*x^7)/(10x^5)=14/5*x^27x3(2x2)210x5=7x34x410x5=28x710x5=145x2

Oct 2, 2015

The answer is (14x^2)/514x25.

Explanation:

Simplify 7x^3(2x^2)^2/(10^5)7x3(2x2)2105 to ((7x^3)(2x^2)^2)/(10x^5)(7x3)(2x2)210x5 .

((7x^3)(2x^2)^2)/(10x^5)(7x3)(2x2)210x5

Apply the exponent rule (a^m)^n=a^(m*n)(am)n=amn

((7x^3)(4x^4))/(10x^5)(7x3)(4x4)10x5

Apply the exponent rule a^mxxa^n=a^(m+n)am×an=am+n.

(28x^(3+4))/(10x^5)=28x3+410x5=

(28x^7)/(10x^5)28x710x5

Apply the exponent rule a^m/a^n=a^(m-n)aman=amn.

(28x^(7-5))/10=28x7510=

(28x^2)/1028x210

Reduce 28/102810 to 14/5=145=.

(14x^2)/514x25