How do you simplify ((a^-2b^4c^5)/(a^-4b^-4c^3))^2?

1 Answer
Jul 14, 2017

((a^(-2)b^4c^5)/(a^(-4)b^(-4)c^3))^2=a^4b^16c^4

Explanation:

Let us use the identities a^(-m)=1/a^m, 1/a^(-m)=a^m, a^mxxa^n=a^(m+n), a^m/a^n=a^(m-n) and (a^m)^n=a^(mn)

Hence ((a^(-2)b^4c^5)/(a^(-4)b^(-4)c^3))^2

= ((1/a^2b^4c^5)/(1/a^4xx1/b^4c^3))^2

= ((a^4b^4b^4c^5)/(a^2c^3))^2

= (a^(4-2)b^(4+4)c^(5-3))^2

= (a^2b^8c^2)^2

= a^(2xx2)b^(8xx2)c^(2xx2)

= a^4b^16c^4