How do you simplify and restricted value of (x^3 - 2x + 3)/( x^2 + 12x + 32)?

1 Answer
May 19, 2017

frac(x^(3) - 2 x + 3)((x + 6)^(2)); x ne - 6

Explanation:

We have: frac(x^(3) - 2 x + 3)(x^(2) + 12 x + 32)

Let's factorise the denominator using the "middle-term break":

= frac(x^(3) - 2 x + 3)(x^(2) + 6 x + 6 x + 32)

= frac(x^(3) - 2 x + 3)(x(x + 6) + 6(x + 6))

= frac(x^(3) - 2 x + 3)((x + 6)(x + 6))

= frac(x^(3) - 2 x + 3)((x + 6)^(2))

Now let's determine the restricted values of x.

The denominator of the fraction can never equal to zero:

Rightarrow (x + 6)^(2) ne 0

Rightarrow x + 6 ne 0

Rightarrow x ne - 6

therefore frac(x^(3) - 2 x + 3)(x^(2) + 12 x + 32) = frac(x^(3) - 2 x + 3)((x + 6)^(2)); x ne - 6