How do you simplify (c^3d^4)/(cd^7)?

2 Answers
Aug 31, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

(c^3/c)(d^4/d^7)

Next, use these rules of exponents to simplify the c terms:

a = a^color(blue)(1) and x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))

(c^3/c^color(blue)(1))(d^4/d^7) => (c^color(red)(3)/c^color(blue)(1))(d^4/d^7) => c^(color(red)(3)-color(blue)(1))(d^4/d^7) => c^2(d^4/d^7)

Now, use this rule of exponents to simplify the d terms:

x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))

c^2(d^color(red)(4)/d^color(blue)(7)) => c^2(1/d^(color(blue)(7)-color(red)(4))) => c^2 * 1/d^3 = c^2/d^3

Aug 31, 2017

(c^2)/(d^3)

Explanation:

"using the "color(blue)"law of exponents"

•color(white)(x)a^m/a^n=a^(m-n)to"for "m>n

•color(white)(x)a^m/a^n=1/a^(n-m)to" for "n>m

(c^3d^4)/(cd^7)

=c^3/c^1xxd^4/d^7

=c^((3-1))xx1/d^((7-4))

=c^2/1xx1/d^3=c^2/d^3