How do you simplify (e^3f^9)/(e^7f^3)e3f9e7f3?

1 Answer
Feb 22, 2017

See the entire simplification process below:

Explanation:

Solution 1) Use this rule for exponents:

x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))xaxb=xab

(e^color(red)(3)f^color(red)(9))/(e^color(blue)(7)f^color(blue)(3)) = e^(color(red)(3)-color(blue)(7))f^(color(red)(9)-color(blue)(3)) = e^-4f^6e3f9e7f3=e37f93=e4f6

Solution 2) Use these rules for exponents if you do not want negative exponents:

x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))xaxb=xab and x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))xaxb=1xba

(e^color(red)(3)f^color(red)(9))/(e^color(blue)(7)f^color(blue)(3)) = f^(color(red)(9)-color(blue)(3))/e^(color(blue)(7)-color(red)(3)) = f^6/e^4e3f9e7f3=f93e73=f6e4