How do you simplify \frac { 8c d ^ { 4} } { 2c d ^ { 8} \cdot c d \cdot c ^ { 6} d }8cd42cd8cdc6d?

1 Answer
Jun 2, 2017

(8cd^4)/(2cd^8*cd*c^6d)=4/(c^7d^6)8cd42cd8cdc6d=4c7d6

Explanation:

(8cd^4)/(2cd^8*cd*c^6d)8cd42cd8cdc6d

= (8cd^4)/(2cxxcxxc^6xxd^8xxd xxd)8cd42c×c×c6×d8×d×d

= (8cd^4)/(2c^((1+1+6))xxd^((8+1+1))8cd42c(1+1+6)×d(8+1+1)

= (8cd^4)/(2c^8xxd^10)8cd42c8×d10

= 8/2xxc/c^8xxd^4/d^1082×cc8×d4d10

= 4xx1/c^((8-1))xx1/d^((10-4))4×1c(81)×1d(104)

= 4xx1/c^7xx1/d^64×1c7×1d6

= 4/(c^7d^6)4c7d6