How do you simplify Log(100.0/5.7)log(100.05.7)?

1 Answer
Jun 16, 2017

log(100/5.7)=color(magenta)(2-log(5.7))log(1005.7)=2log(5.7)

Explanation:

(I am assuming the standard usage: loglog means log_10log10)

log(a/b)=log(a)-log(b)log(ab)=log(a)log(b)

log_10(100)=color(blue)2color(white)("XXXX")log10(100)=2XXXXsince 10^color(blue)2=100102=100

Therefore
color(white)("XXX")log_10(100/5.7)=2 - log_10(5.7)XXXlog10(1005.7)=2log10(5.7)

Note that there is no simple evaluation for log_10(5.7)log10(5.7)
but if necessary you could use a calculator to determine
color(white)("XXX")log(5.7)~~0.755874856XXXlog(5.7)0.755874856
and from there
color(white)("XXX")log_10(100/5.7)=2-log_10(5.7)~~1.244125144XXXlog10(1005.7)=2log10(5.7)1.244125144