How do you simplify log_5 (1/250)?

1 Answer
Apr 28, 2016

I found: -log_5(2)-3

Explanation:

We can write it as:
log_5(1/250)=log_5(250)^-1=-log_5(250)=
using the fact that: log(xy)=logx+logy
=-log(2*125)=-[log_5(2)+log_5(125)]=
using the definition of log we get:
=-log_5(2)-3

or alternatively we can use the fact that:

log(x/y)=log(x)-log(y)
and again:
log(xy)=logx+logy
and write:
log_5(1/250)=log_5(1)-log_5(250)=
=log_5(1)-log_5(2*125)=
=log_5(1)-[log_5(2)+log_5(125)]=
using the definition of log again we get:
=0-log_5(2)-3=
=-log_5(2)-3