How do you simplify (t^2-25)/(t^2+t-20)?

2 Answers
May 18, 2018

=>(t-5)/(t-4)

Explanation:

(t^2-25) / (t^2+t-20)

={(t+5)(t-5)}/{(t+5)(t-4)}

We can cancel the t+5 terms

={cancel{(t+5)}(t-5)}/{cancel{(t+5)}(t-4)}

=(t-5)/(t-4)

May 18, 2018

(t^2-25)/(t^2+t-20)=color(blue)((t-5)/(t-4)

Explanation:

Simplify:

(t^2-25)/(t^2+t-20)

Factor the numerator using the formula for a difference of squares:

(a^2+b^2)=(a+b)(a-b),

where:

a=t^2 and b=5^2.

(t^2-5^2)=color(red)((t+5)color(green)((t-5))

color(red)((t+5)color(green)((t-5)))/(t^2+t-20)

Factor the denominator.

Find two numbers that when added equal 1 and when multiplied equal -20. The numbers -4 and 5 meet the requirements.

t^2+t-20=color(red)((t+5))color(purple)((t-4))

color(red)((t+5)color(green)((t-5)))/color(red)((t+5)color(purple)((t-4))

Cancel t+5.

(cancel(t+5)(t-5))/(cancel(t+5)(t-4))

(t-5)/(t-4)