How do you simplify tan^2 x- cot^2xtan2xcot2x?

3 Answers
Nov 6, 2015

tan^2x-cot^2x=(sin^2x)/(cos^2x)-(cos^2x)/(sin^2x)tan2xcot2x=sin2xcos2xcos2xsin2x

=(sin^4x-cos^4x)/(sin^2x*cos^2x)=sin4xcos4xsin2xcos2x

=((sin^2x+cos^2x)(sin^2x-cos^2x))/((1-cos^2x)(1-sin^2x)=(sin2x+cos2x)(sin2xcos2x)(1cos2x)(1sin2x)

=((1)(sinx+cosx)(sinx-cosx))/((1+cosx)(1-cosx)(1+sinx)(1-sinx)=(1)(sinx+cosx)(sinxcosx)(1+cosx)(1cosx)(1+sinx)(1sinx)

Does not appear to be able to simplify any further.

Mar 26, 2017

tan^2x-cot^2x = -4csc(2x)cot(2x)tan2xcot2x=4csc(2x)cot(2x)

Explanation:

tan^2x-cot^2xtan2xcot2x

= sin^2(x)/cos^2(x) - cos^2(x)/sin^2(x)=sin2(x)cos2(x)cos2(x)sin2(x)

= (sin^4(x)-cos^4(x))/(cos^2(x)sin^2(x))=sin4(x)cos4(x)cos2(x)sin2(x)

= ((sin^2x+cos^2x)(sin^2x-cos^2x)) / (cos(x)sin(x))^2=(sin2x+cos2x)(sin2xcos2x)(cos(x)sin(x))2

= ((1)(-cos(2x)))/(1/4sin^2(2x))=(1)(cos(2x))14sin2(2x)

=-4cos(2x)/sin^2(2x)=4cos(2x)sin2(2x)

= -4csc(2x)cot(2x)=4csc(2x)cot(2x)

Final Answer

Mar 27, 2017

(sec^2 x - csc^2 x)(sec2xcsc2x)

Explanation:

Add 1 and (- 1) into the equation:
f(x) = (tan^2 x + 1) - (cot^2 x + 1) =f(x)=(tan2x+1)(cot2x+1)=
f(x) = sec^2 x - csc^2 xf(x)=sec2xcsc2x