How do you simplify the expression #(x^4-y^4) /( (x^4+2x^2y^2+y^4)(x^2-2xy+y^2))#?
2 Answers
Explanation:
There are two polynomial equalities that will help us.
Analyzing the numerator
At the denominator we have
Putting all together
#(x^4-y^4)/((x^4+2x^2y^2+y^4)(x^2-2xy+y^2))=(x+y)/((x^2+y^2)(x-y))#
Explanation:
#(x^4-y^4)/((x^4+2x^2y^2+y^4)(x^2-2xy+y^2))#
#=((x^2-y^2)color(red)(cancel(color(black)((x^2+y^2)))))/(color(red)(cancel(color(black)((x^2+y^2))))(x^2+y^2)(x-y)(x-y))#
#=(color(red)(cancel(color(black)((x-y))))(x+y))/((x^2+y^2)color(red)(cancel(color(black)((x-y))))(x-y))#
#=(x+y)/((x^2+y^2)(x-y))#
Note that we do not have to specify any exclusions as the values we have cancelled out from the numerator and denominator exist in the denominator of the simplified expression.