How do you simplify (x^2-6x+9)/(81-x^4)x26x+981x4?

1 Answer
Jun 6, 2016

(x^2-6x+9)/(81-x^4)=(3-x)/((9+x^2)(3+x))x26x+981x4=3x(9+x2)(3+x)

Explanation:

To simplify (x^2-6x+9)/(81-x^4)x26x+981x4, first factorize polynomials in numerator and denominator.

x^2-6x+9x26x+9 is complete square of the type (a-b)^2=a^2-2ab+b^2(ab)2=a22ab+b2, as x^2-6x+9=(x)^2-2xx x xx 3 +3^2x26x+9=(x)22×x×3+32. Hence,

x^2-6x+9=(x-3)^2x26x+9=(x3)2.

This can also be written as 9-6x+x^2=(3-x)^296x+x2=(3x)2

For factorizing 81-x^481x4, we use the identity (a^2-b^2)=(a+b)(a-b)(a2b2)=(a+b)(ab)

Hence 81-x^4=(9)^2-*x^2)^2=(9+x^2)(9+x^2)=(9+x^2)(3^2-x^2)81x4=(9)2x2)2=(9+x2)(9+x2)=(9+x2)(32x2)

= (9+x^2)(3+x)(3-x)(9+x2)(3+x)(3x)

Hence (x^2-6x+9)/(81-x^4)=(3-x)^2/((9+x^2)(3+x)(3-x))x26x+981x4=(3x)2(9+x2)(3+x)(3x)

= (3-x)/((9+x^2)(3+x))3x(9+x2)(3+x)