How do you simplify ( x^-3 y^ -5 )/z^-2? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer Tazwar Sikder Sep 5, 2016 (z^(2)) / (x^(3) y^(5)) Explanation: We have: (x^(- 3) y^(- 5)) / (z^(- 2)) Let's express the variables as fractions: = ((1) / (x^(3)) cdot (1) / (y^(5))) / ((1) / (z^(2))) = ((1) / (x^(3) y^(5))) / ((1) / (z^(2))) = ((1) / (x^(3) y^(5))) / ((1) / (z^(2))) cdot (z^(2)) / (z^(2)) = ((z^(2)) / (x^(3) y^(5))) / (1) = (z^(2)) / (x^(3) y^(5)) Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression (2^2/3^3)^3? How do you simplify the expression \frac{a^5b^4}{a^3b^2}? How do you simplify ((a^3b^4)/(a^2b))^3 using the exponential properties? How do you simplify \frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}? Which exponential property do you use first to simplify \frac{(2a^2bc^2)(6abc^3)}{4ab^2c}? How do you simplify (x^5y^8)/(x^4y^2)? How do you simplify [(2^3 *-3^2) / (2^4 * 3^-2)]^2? See all questions in Exponential Properties Involving Quotients Impact of this question 1759 views around the world You can reuse this answer Creative Commons License