How do you simplify (x^6)^3/(x^4)^6?

1 Answer
Aug 28, 2016

1/x^6

Explanation:

Using the color(blue)"laws of exponents"

color(orange)"Reminder"

• color(red)(|bar(ul(color(white)(a/a)color(black)((a^m)^n=a^mn)color(white)(a/a)|)))

rArr(x^6)^3=x^(6xx3)=x^(18)" and " (x^4)^6=x^(4xx6)=x^(24)

Thus we have (x^6)^3/(x^4)^6=x^(18)/x^(24)

color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)((a^m)/(a^n)=a^(m-n))color(white)(a/a)|)))

rArr(x^(18))/(x^(24))=x^(18-24)=x^(-6)

color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(a^(-m)=1/(a^m))color(white)(a/a)|)))

rArrx^(-6)=1/x^6
color(blue)"-------------------------------------------------------------"

rArr(x^6)^3/(x^4)^6=(x^(18))/x^(24)=x^(-6)=1/x^6