How do you simplify #(y – x)/(x^2y) + (x + y) (xy^2)#?

1 Answer
Apr 21, 2018

See explanation

Explanation:

Rules used:
Negative exponents #1/x^a=x^-a#
Exponent of exponent value #(a^b)^c=a^(bxxc)#
Exponential multiplication #a^b*a^c=a^(b+c)#
Distributive property #a(b+c)=a(b)+a(c)#
Zero exponent #z^0=1#

Steps:
1. Simplify the first half.
Negative exponents #(y-x)/(x^2y)=(y-x)*(x^2y)^-1#
Exponent of exponent value #y(x^-2y^-1)-x(x^-2y^-1)#
Distributive property #(y-x)(x^-2y^-1)=(x^2y)^-1=x^(2xx(-1))y^-1=x^-2y^-1#
Exponential multiplication #y^(1-1)x^-2-x^(1-2)y^-1=y^0x^-2-x^-1y^-1#
Zero exponent #(1)x^-2-x^-1y^-1#
Negative exponent #1/x^2-1/(xy)#
Result: #\color(tomato)(1/x^2-1/(xy))#
2. Simplify the second half.
Distributive property #(x+y)(xy^2)=x(xy^2)+y(xy^2)#
Exponential multiplication #x(xy^2)=x^(1+1)y^2=x^2y^2# and #y(xy^2)=xy^(1+2)=xy^3#
Result: #\color(orchid)(x^2y^2+xy^3)#
3. Combine these simplified halves.
#\color(tomato)(1/x^2-1/(xy))+\color(orchid)(x^2y^2+xy^3)#