How do you solve 1/2(log_7x+log_7 8)=log_7 16?

1 Answer
Nov 26, 2016

log_7 x + log_7 8 = log_7 16/(1/2)

log_7 x + log_7 8 = 2log_7 16

We now apply the rules log_a n + log_a m = log_a (n xx m) and alogn = logn^a.

log_7(x xx 8) = log_7 16^2

log_7 8x = log_7 256

If loga = logb, then a = b.

8x = 256

x = 32

Hopefully this helps!