How do you solve 1/2log_a(x + 2) + 1/2log_a(x - 1) = 2/3log_a2712loga(x+2)+12loga(x1)=23loga27?

1 Answer
Dec 4, 2015

I found: x=(-1+3sqrt(37))/2x=1+3372

Explanation:

We can try some manipulations:
collect 1/212:
1/2[log_a(x+2)+log_a(x-1)]=2/3log_a2712[loga(x+2)+loga(x1)]=23loga27
log_a(x+2)+log_a(x-1)=2*2/3log_a27loga(x+2)+loga(x1)=223loga27

use the property of logs that says:
logx+logy=log(xy)logx+logy=log(xy)
log_a[(x+2)(x-1)]=4/3log_a27loga[(x+2)(x1)]=43loga27

use the other property of logs that says:
alogx=logx^aalogx=logxa
log_a[(x+2)(x-1)]=log_a27^(4/3)loga[(x+2)(x1)]=loga2743

if the two logs must be equal then the argumens must be as well:
(x+2)(x-1)=27^(4/3)(x+2)(x1)=2743
(x+2)(x-1)=root3(27^4)(x+2)(x1)=3274
(x+2)(x-1)=81(x+2)(x1)=81
x^2-x+2x-2-81=0x2x+2x281=0
x^2+x-83=0x2+x83=0

You can now use the Quadratic Formula to get:
x_(1,2)=(-1+-sqrt(1+332))/2=x1,2=1±1+3322=
two solutions:
x_1=(-1-3sqrt(37))/2x1=13372 NO it will give you a negative log.
x_2=(-1+3sqrt(37))/2x2=1+3372