How do you solve (1/4)^(2x)= (1/2)^x?

2 Answers

x=0

Explanation:

Given that

(1/4)^{2x}=(1/2)^x

(1/2^2)^{2x}=(1/2)^x

(1/2)^{2\cdot 2x}=(1/2)^x

(1/2)^{4x}=(1/2)^x

Comparing the powers of base 1/2 on both the sides we get

4x=2x

2x=0

x=0

Jul 25, 2018

x=0

Explanation:

(1/4)^(2x)=((1/2)^2)^(2x)=(1/2)^(4x)

"For "(1/2)^(4x)=(1/2)^xrArrx=0