How do you solve (1/(cos^2 x)) + 1 - 3 tan^2 x = 0?

1 Answer
May 31, 2015

(1/cos^2x)+1−3tan^2x=0

sec^2(x)+1-3tan^2x=0

Since color(blue)(tan^2x+1=sec^2x)
then color(blue)(1= sec^2x-tan^2x)

sec^2x + (color(blue)(sec^2-tan^2x))-3tan^2x=0

2sec^2x-4tan^2x = 0

Factor and divide out 2:

2(sec^2x-2tan^2x)=0

sec^2x-2tan^2x=0

1/cos^2x = (2sin^2x)/(cos^2x)

1=2sin^2x

+-1/sqrt(2) = sinx

Without restriction:
x=pi/4 +kpi

From 0 to 2pi
x = pi/4, (3pi)/4, (5pi)/4, (7pi)/4

You can see it on the graph:

graph{(secx)^2+1-3(tanx)^2 [-10.125, 9.875, -2.28, 7.72]}