How do you solve [(1+cosx)/(sinx)]=-1 over [0,2pi)?

1 Answer
Apr 17, 2015

Here is one way to solve it, by using these trig identities

  1. color(blue)( 1 + cos x = 2*cos^2 (x/2))
  2. color(blue)(sin x = 2 sin (x/2)*cos (x/2)
  3. color(blue)(sin x + cos x = sqrt2*sin (x/2 + pi/4).

f(x) = (1 + cos x) + sin x = 0. Change variable x to x/2.

f(x) = 2*cos^2 (x/2) + 2*sin (x/2)*cos (x/2) = 0

f(x) = 2cos (x/2)*(cos (x/2) + sin (x/2) = 0

Next, solve:

cos (x/2) = 0 --> x/2 = pi/2 and x/2 = 3pi/2 --> x = pi and x = (3pi)/2.

(sin x + cos x) = sqrt2*sin (x/2 + pi/4) = 0

sin (x/2 + pi/4) = 0 --> x/2 + pi/4 = pi and 2pi

x/2 = pi - pi/4 = (3pi)/4 --> x = (6pi)/4 = (3pi)/2

x/2 = 2pi - pi/4 --> x/2 = (7pi)/4 -->x = (14pi)/4 = (7pi)/2 (out of interval)
Answers within (0, 2pi): pi; and (3pi)/2

Check:
When x = pi --> cos x = -1; sin x = 0 --> f(x) = 1 - 1 = 0 Correct
When x = (3pi)/2 --> cos x = 0; sin x = -1--> f(x) = 1 - 1 = 0 Correct