How do you solve 1-sin(theta)=cos2(theta)?

1 Answer
Aug 13, 2018

theta={kpi, k inZZ}uu{kpi+(-1)^k *pi/6 ,k inZZ}

Explanation:

Here ,

1-sintheta=cos2theta

:.1-sintheta=1-2sin^2theta

:.2sin^2theta-sintheta=0

:.sintheta(2sintheta-1)=0

:.sintheta=0 or2sintheta-1=0

:.sintheta=0 or sintheta=1/2

(i)sintheta=0=>theta=kpi, k inZZ

(ii)sintheta=1/2=>sintheta=pi/6

=>theta=kpi+(-1)^k *pi/6 ,k inZZ

Hence,

theta={kpi, k inZZ}uu{kpi+(-1)^k *pi/6 ,k inZZ}