How do you solve 1 + sin(x) = cos(x)?

1 Answer
Jul 1, 2016

Answers: pi, (3pi)/2

Explanation:

Use the trig formula:
sin a - cos a = sqrt2sin (a + pi/4)
sin x - cos x = -1
sqrt2sin (x + pi/4) = - 1
sin (x + pi/4) = - 1/sqrt2 = -sqrt2/2
Trig table and unit circle -->there are 2 solutions:
a. x + pi/4 = -pi/4
x = - pi/4 - pi/4 = -pi/2, or 3pi/2 (co-terminal)
b. x + pi/4 = pi - (-pi/4) = (5pi)/4
x = (5pi)/4 - pi/4 = pi
Answers for (0, 2pi):
pi, (3pi)/2
Check .
x = pi --> sin x = 0 -> cos x = -1 --> - 1 + 0 = -1 . OK
x = (3pi)/2 --> sin x = -1 -> cos x = 0 --> -1 + 0 = - 1. OK