How do you solve 1-sin2x = cosx- sinx?

1 Answer
Apr 6, 2016

Arc x = 0; x = pi/4; x = pi/2; x = pi

Explanation:

1 - sin 2x = cos x - sin x
Square both sides:
(1 - sin 2x)^2 = (cos x - sin x)^2
1 - 2sin 2x + sin^2 2x = cos^2 x + sin^2 x - 2sin x.cos x
1 - 2sin 2x + sin^2 2x = 1 - sin 2x
sin^2 2x - sin 2x = 0
sin 2x (sin 2x - 1) = 0
a. sin 2x = 0
sin 2x= 0 --> 2x = 0 --> x = 0
sin 2x = 0 --> 2x = pi --> x = pi/2
sin 2x = 0 --> 2x = 2pi --> x = pi
b. sin 2x = 1 --> 2x = pi/2 --> x = pi/4