How do you solve 1+sinx=2cos^2x1+sinx=2cos2x in the interval 0<=x<=2pi0x2π?

1 Answer
Jul 26, 2016

Based on two different cases: x = pi/6, (5pi)/6 or (3pi)/2x=π6,5π6or3π2

Look below for the explanation of these two cases.

Explanation:

Since, cos^ x + sin^2 x = 1cosx+sin2x=1
we have: cos^2 x = 1 - sin^2 xcos2x=1sin2x

So we can replace cos^2 xcos2x in the equation 1 + sinx = 2cos^2x1+sinx=2cos2x by (1- sin^2 x)(1sin2x)

=>2 (1 - sin^2 x) = sin x +12(1sin2x)=sinx+1

or, 2 - 2 sin^2 x = sin x + 122sin2x=sinx+1

or, 0=2sin ^2 x + sin x + 1 - 20=2sin2x+sinx+12

or, 2sin ^2 x + sin x - 1 = 02sin2x+sinx1=0

using the quadratic formula:

x = (-b+-sqrt(b^2 - 4ac))/(2a)x=b±b24ac2a for quadratic equation ax^2+bx+c=0ax2+bx+c=0

we have:

sin x = (-1+-sqrt(1^2 - 4*2*(-1)))/(2*2)sinx=1±1242(1)22

or, sin x = (-1+-sqrt(1 + 8))/4sinx=1±1+84

or, sin x = (-1+-sqrt(9))/4sinx=1±94

or, sin x = (-1+-3)/4sinx=1±34

or, sin x = (-1+3)/4, (-1-3)/4sinx=1+34,134

or, sin x = 1/2, -1sinx=12,1

Case I:

sin x = 1/2sinx=12

for the condition: 0<=x<=2pi0x2π

we have:

x= pi/6 or (5pi)/6x=π6or5π6 to get positive value of sinxsinx

Case II:

sin x = -1sinx=1

we have:

x= (3pi)/2x=3π2 to get negative value of sinxsinx