How do you solve (1 + sinx + cosx)/(1 + sinx - cosx) = (1 + cosx)/sinx1+sinx+cosx1+sinxcosx=1+cosxsinx?

1 Answer
Apr 28, 2018

LHS=(1+sinx+cosx)/(1+sinx-cosx)LHS=1+sinx+cosx1+sinxcosx

=(sinx/sinx)*(1+sinx+cosx)/(1+sinx-cosx)=(sinxsinx)1+sinx+cosx1+sinxcosx

=1/sinx[(sinx+sin^2x+sinx*cosx)/(1+sinx-cosx)]=1sinx[sinx+sin2x+sinxcosx1+sinxcosx]

=1/sinx[(sinx(1+cosx)+(1+cosx)(1-cosx))/(1+sinx-cosx)]=1sinx[sinx(1+cosx)+(1+cosx)(1cosx)1+sinxcosx]

=1/sinx[((1+cosx)cancel((sinx+1-cosx)))/(cancel((sinx+1-cosx)]

=(1+cosx)/sinx=RHS