We cannot do crossing over
Let's rearrange the equation
1/(x+1)>2/(x-1)
2/(x-1)-1/(x+1)<0
(2x+2-x+1)/((x+1)(x-1))<0
(x+3)/((x+1)(x-1))<0
Let f(x)=(x+3)/((x+1)(x-1))
We can build the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-3color(white)(aaaaaaa)-1color(white)(aaaaaaa)1color(white)(aaaaaaa)+oo
color(white)(aaaa)x+3color(white)(aaaaa)-color(white)(aaaaa)+color(white)(aaaa)||color(white)(aa)+color(white)(aaa)||color(white)(aaaa)+
color(white)(aaaa)x+1color(white)(aaaaa)-color(white)(aaaaa)-color(white)(aaaa)||color(white)(aa)+color(white)(aaa)||color(white)(aaaa)+
color(white)(aaaa)x-1color(white)(aaaaa)-color(white)(aaaaa)-color(white)(aaaa)||color(white)(aa)-color(white)(aaa)||color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaa)-color(white)(aaaaa)+color(white)(aaaa)||color(white)(aa)-color(white)(aaa)||color(white)(aaaa)+
Therefore,
f(x)<0 when x in ]-oo, -3[uu]-1,1[