How do you solve 1/(x+1)>2/(x-1)?

2 Answers
Feb 20, 2017

x<-3

Explanation:

1/(x+1)>2/(x-1)

1/(x+1)-2/(x-1)>0

((x-1)-2(x+1))/(x^2-1)>0 [ x!=+-1]

-x-3>0 -> x+3<0#

:. x<-3

Feb 20, 2017

The solution is x in ]-oo, -3[uu]-1,1[

Explanation:

We cannot do crossing over

Let's rearrange the equation

1/(x+1)>2/(x-1)

2/(x-1)-1/(x+1)<0

(2x+2-x+1)/((x+1)(x-1))<0

(x+3)/((x+1)(x-1))<0

Let f(x)=(x+3)/((x+1)(x-1))

We can build the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-3color(white)(aaaaaaa)-1color(white)(aaaaaaa)1color(white)(aaaaaaa)+oo

color(white)(aaaa)x+3color(white)(aaaaa)-color(white)(aaaaa)+color(white)(aaaa)||color(white)(aa)+color(white)(aaa)||color(white)(aaaa)+

color(white)(aaaa)x+1color(white)(aaaaa)-color(white)(aaaaa)-color(white)(aaaa)||color(white)(aa)+color(white)(aaa)||color(white)(aaaa)+

color(white)(aaaa)x-1color(white)(aaaaa)-color(white)(aaaaa)-color(white)(aaaa)||color(white)(aa)-color(white)(aaa)||color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)-color(white)(aaaaa)+color(white)(aaaa)||color(white)(aa)-color(white)(aaa)||color(white)(aaaa)+

Therefore,

f(x)<0 when x in ]-oo, -3[uu]-1,1[