How do you solve 10x=5x+1?

2 Answers
May 7, 2016

x=log5log2.

Explanation:

10x=(2X5)x=2x5x=5x+1=5x51.

Cancelling the common factor 5x,

2x=5.

Equating the logarithms,

xlog2=log5.

So, x=log5log2.

I found: x=2.32193

Explanation:

We can try taking the natural log of both sides and apply one property of logs to write:
ln(10x)=ln(5x+1)
and then for the exponents:
xln(10)=(x+1)ln(5)
rearrange:
xln(10)=xln(5)+ln(5)
xln(10)xln(5)=ln(5)
so:
x[ln(10)ln(5)]=ln(5)
and:
x=ln(5)ln(10)ln(5)=ln5ln(105)=ln5ln2=2.32193