How do you solve 11=3csc^2x+711=3csc2x+7 for 0<=x<=2pi0x2π?

1 Answer
Sep 4, 2016

x=pi/3,(2pi)/(3),(4pi)/(3),(5pi)/(3)x=π3,2π3,4π3,5π3

Explanation:

We have: 11=3csc^(2)(x)+711=3csc2(x)+7; 0leqxleq2pi0x2π

Let's subtract 77 from both sides of the equation:

=> 3csc^(2)(x)=43csc2(x)=4

Then, we can divide both sides by 33:

=> csc^(2)(x)=4/3csc2(x)=43

To simplify the left-hand side we can take the square root of both sides:

=> csc(x)=pmsqrt(4/3)csc(x)=±43

=> csc(x)=pm(2sqrt(3))/3csc(x)=±233

=> x=pi/3,(2pi)/(3),(4pi)/(3),(5pi)/(3)x=π3,2π3,4π3,5π3