How do you solve 12^x=14^(3x)12x=143x?

1 Answer
Aug 5, 2015

I found: x=0x=0

Explanation:

Take the natural log (ln) on both sides:
ln12^x=ln14^(3x)ln12x=ln143x
use the property that:
lnx^a=alnxlnxa=alnx to get:
xln12=3xln14xln12=3xln14
xln12-3xln14=0xln123xln14=0
so:
x(ln12-3ln14)=0x(ln123ln14)=0

this is true only if x=0x=0