How do you solve 2-2cos^2x=5sinx+3?

2 Answers
Sep 13, 2016

Solution is x=210^0 ,x= -30^0

Explanation:

2-2cos^2x=5sinx+3 or 2(1-cos^2x)-5sinx-3=0 or 2sin^2x-5sinx-3=0 or 2sin^2x-6sinx+sinx-3=0 or 2sinx(sinx-3)+1(sinx-3)=0 or (2sinx+1)(sinx-3)=0 :. sinx=3 or 2sinx=-1But sinx lies between [-1,1] so sinx != 3 :. 2sinx = -1 or sinx = -1/2We know sin(-30)=-1/2 and sin210= -1/2.So solution is x=210^0 ,x= -30^0[Ans]

Sep 13, 2016

(7pi)/6 + 2kpi
(11pi)/6 + 2kpi

Explanation:

2(1 - cos^2 x) = 5sin x + 3
2sin^2 x = 5sin x + 3 --> (because sin^2 x = 1 - cos^2 x)
2sin^2 x - 5sin x - 3 = 0
Solve this quadratic equation for sin x by the improved quadratic formula in graphic form (Socratic Search)
D = d^2 = b^2 - 4ac = 25 + 24 = 49 --> d = +- 7
There are 2 real roots:
sin x = - b/(2a) +- d/(2a) = 5/4 +- 7/4 = (5 +- 7)/4
a. sin x = 12/4 = 3 (rejected as > 1), and
b. sin x = -2/4 = -1/2
Trig table of special arcs and unit circle -->
sin x = - 1/2 --> x = - pi/6 and x = - (5pi)/6.
Their co-terminal arcs are: (11pi)/6 and (7pi)/6
General answers
x = (7pi)/6 + 2kpi
x = (11pi)/6 + 2kpi