How do you solve 2 cos-1 x = pi2cos1x=π?

1 Answer
Feb 24, 2018

color(blue)(x=0)x=0

Explanation:

I'm reading this as 2cos^-1(x)=pi2cos1(x)=π

2cos^-1(x)=pi2cos1(x)=π

Divide both sides by 2:

cos^-1(x)=pi/2cos1(x)=π2

Take the cosine of both sides: *

cos(cos^-1(x))=cos(pi/2)cos(cos1(x))=cos(π2)

x=cos(pi/2)x=cos(π2)

cos(pi/2)=0cos(π2)=0

Hence:

color(blue)(x=0)x=0

*
If y=cos(x)y=cos(x)

Then:

x=cos^-1(y)x=cos1(y)

cos(cos^-1(y))=cos(x)=ycos(cos1(y))=cos(x)=y