How do you solve 2 cos^2 x = 3 sin x on the interval [0,2pi]?

1 Answer
Jul 25, 2015

Solve 2cos^2 x = 3sin x

Ans: pi/6 and (5pi)/6

Explanation:

2(1 - sin^2 x) = 3sin x. Call sin x = t
2 - 2t^2 = 3t --> 2t^2 + 3t - 2 = 0
D = d^2 = 9 + 16 = 25 --> d = +- 5
t = sin x = -3/4 +- 5/4

t = 2/4 = 1/2 and t = -8/4 = - 2 (rejected because < -1)

t = sin x = 1/2 --> x = pi/6 and x = (5pi)/6