How do you solve 2(sinx)^2 - 5cosx - 4 = 02(sinx)25cosx4=0 in the interval [0, 2pi]?

1 Answer
May 3, 2016

x=(2pi)/3x=2π3 or (4pi)/34π3

Explanation:

2(sinx)^2-5cosx-4=02(sinx)25cosx4=0

is equivalent to

2(1-cos^2x)-5cosx-4=02(1cos2x)5cosx4=0 or

2-2cos^2x-5cosx-4=022cos2x5cosx4=0

or 2cos^2x+5cosx+2=02cos2x+5cosx+2=0

or using quadratic formula

cosx=(-5+-sqrt(5^2-4xx2xx2))/(2xx2)=(-5+-sqrt(25-16))/4cosx=5±524×2×22×2=5±25164

or cosx=(-5+-3)/4cosx=5±34 or cosx=-2cosx=2 or cosx=-2/4=-1/2cosx=24=12

But cosxcosx cannot be -22, hence cosx=-1/2cosx=12

or x=2npi+-(2pi)/3x=2nπ±2π3

And in interval [0,2pi][0,2π], x=(2pi)/3x=2π3 or (4pi)/34π3