How do you solve 2^(x+1) = 3^x?

1 Answer
Jan 23, 2016

xapprox1.7093

Explanation:

2^(x+1)=3^x
Taking log of both sides
log2^(x+1)=log3^x
implies (x+1)log2=xlog3
implies (x+1)xx0.3010=x xx0.4771
Rearranging we get
(-0.3010+0.4771)x=0.3010
implies x=0.3010/(0.4771-0.3010)

xapprox1.7093